
Playing “Dominion” with
Deep Reinforcement Learning
Garrick Fernandez

Department of Computer Science
Stanford University

Stanford, CA
garrick@cs.stanford.edu

Benjamin Anderson
Department of Computer Science

Stanford University
Stanford, CA

banders9@stanford.edu

Abstract—Developing a good strategy in a multi-player game
requires dealing with a significant amount of uncertainty, due to
the unknown behavior of other agents, as well as inherent ran-
domness. In our project, we apply deep reinforcement learning
to the multi-player card game “Dominion.” Our RL agent was
able to beat a computer player which selected a random action
every turn. Subjectively (judging by our domain knowledge), the
agent seemed to often choose fairly reasonable actions, though
not optimal. With more self-play and more sophisticated feature
extraction, we hypothesize that our agent could get even better.

“You are a monarch, like your parents before you, a ruler
of a small pleasant kingdom of rivers and evergreens. Unlike
your parents, however, you have hopes and dreams! You want
a bigger and more pleasant kingdom, with more rivers and a
wider variety of trees. You want a Dominion! But wait! Several
other monarchs have had the exact same idea. You must race
to get as much of the unclaimed land as possible, fending them
off along the way.” – Dominion game box

I. INTRODUCTION

Reinforcement learning (RL) describes a set of approaches
for making decisions in sequential problems (Markov decision
processes) where the consequences of these choices are un-
known. Just as an animal can learn behavior based on rewards
and punishments (e.g. treats or electric shocks), reinforcement
learning algorithms such as Q-Learning (Watkins, 1989) [1]
and SARSA (Rummery & Niranjan, 1994) [2] leverage dy-
namic programming to allow an artificial agent to learn an
optimal ‘policy’ from experience.

One interesting domain where agents must a make a se-
quence of decisions under conditions of uncertainty is game-
playing. In a zero-sum multi-player game, players take turns
making decisions, and the conditions of the game evolve based
on those decisions, until someone wins the game, which is
the “reward.” From the viewpoint of a single player, each of
her decisions lead to an outcome that she cannot be sure of,
because it depends on what other players do, and sometimes
on randomness built into the game. Thus, although there search
algorithms designed specifically for games, it can also make
sense to treat some games as Markov decision processes, and
learn a strategy with reinforcement learning. We review several
successful applications of reinforcement learning to games in
Section II.

In this paper, we explore the application of reinforcement
learning to the game of Dominion. Dominion is a two- to four-
player “deck-building” game, so called because each player
begins the game with a small, weak deck of cards, and over the
course of the game, purchases more cards to add to his or her
deck to improve it. At each turn, players must make decisions
about what cards to play and what cards to purchase. These
decisions occur under conditions of uncertainty due principally
to (a) the random order of cards in their deck upon shuffling;
and (b) the choices made by other players.

Because the state space of the game is large, effective
learning requires generalization about the expected value of
taking each action from a given state. We use deep learning
(i.e. neural networks) to approximate the value of unseen states
and actions from those that have been observed, and use the
SARSA algorithm to update the agent’s beliefs about these
values from experience.

With this approach, we were able to teach our agent to play
Dominion well enough to beat a naive “random” policy. We
also noticed significant improvement in estimating Q-values
over repeated iterations of self-play.

II. RELATED WORK

A. Reinforcement Learning and Deep RL

Reinforcement learning operates in an environment where
transitions and rewards are unknown. Given this uncertainty,
one can either try to estimate transitions probabilities and
rewards (model-based RL), or directly estimate the value of
taking some action from some state (model-free RL). One
of the earliest model-free approaches is Q-Learning, which
uses bootstrapping (estimates based on previous estimates)
to determine the “Q-value” of taking action a from state s,
according to the following equation [3]:

Q(s, a)← Q(s, a) + α
(
r + γ maxa′ Q(s′, a′)−Q(s, a)

)
This equation ‘re-estimates’ the value of Q(s, a) as the reward
earned, plus the estimated Q-value of the subsequent state
(guessing the “best” action from this state), discounted by γ.
Then, Q(s, a) is updated as a weighted average of the new and
old estimate, where the learning rate α determines the weight
of the new estimate. SARSA is similar to Q-Learning, except



that it requires a pre-determined policy, and estimates the Q-
value based on the next action taken by this policy, rather than
maximizing over all possible actions. With suitable policies to
encourage exploration, both of these algorithms converge to
the true Q-values. [3]

Q-Learning and SARSA as originally conceived require
a “lookup table” for the Q-value of a state-action pair. [2]
In environments like Dominion (and other complex games),
where the state space is enormous or infinite, it is not possible
to even experience every state during learning, let alone store
all of these Q-values. Instead, we must generalize: infer the
Q-values of states we haven’t seen from those we have,
which requires extracting the relevant features of a state, and
determining how those features relate to the value of taking
each action from that state.

One approach for doing so is deep learning, which leverages
neural networks to learn a predictor that can be non-linear and
very expressive (as each layer of the neural network can repre-
sent a higher level of abstraction based on the previous layer).
For example, it can learn abstract features of visual input
expressed in pixels [4]. The use of deep learning to solve this
generalization challenge in reinforcement learning is known as
deep reinforcement learning, and it has been responsible for
many of the successful applications of reinforcement learning
to challenging, real-world problems, from robotics to finance
[4]. It has also been applied successfully in game-playing, and
some of this work will be discussed in the following section.

B. Game-Playing with RL

As mentioned in the introduction, many games can reason-
ably be treated as sequential decision processes with uncertain
transition functions and rewards. Reinforcement learning can
then be applied to develop a strategy or policy for playing
the game, which allows an AI agent to play autonomously.
Mnih et al. used Deep RL to successfully play a wide many
Atari games at or above a human level of proficiency simply
by observing pixel values as the “state,” and using controller
inputs as actions. [5] Deep RL has been successfully applied
to multi-player games as well: for example, Silver et al. used
neural networks and reinforcement learning to develop an
agent for the (incredibly complex) board game Go, which
played just as well as “state-of-the art” Monte Carlo Tree
Search programs. [6]

Previous Decision Making Under Uncertainty student
projects have also applied reinforcement learning to adversar-
ial games, such as Texas Hold ’Em [7] and Super Smash Bros.
Melee [8]. We were particularly interested in the Smash project
because it successfully applied a perceptron to generalize
across a vast state space. Deep neural networks are a more
complicated approach, but they share the basic framework of
perceptrons, which is taking in a set of inputs and using a
learned function to output a prediction for the value of a state-
action pair.

III. PROBLEM AND APPROACH

A. The Game of Dominion

Dominion is a multiplayer, adversarial card game, played
with a specialized set of cards. It is part of a set of games
known as “deck-building” games, so called because each
player begins the game with a small, weak deck of cards,
and over the course of the game, uses the cards they already
has to purchase more cards, which are permanently added to
add to her deck to improve it.

There are three main types of cards in Dominion, shown
in Figure 1 below. Treasure cards are give the player money
to buy new cards. Victory cards do not do anything until the
end of the game, when they are counted up to determine the
winner. Action cards do a wide variety of things, including
allowing players to gain cards or attack other players. (To
avoid confusion, we will use “Actions” to refer to these cards,
and use “actions” to refer to any decisions made by players in
a sequential decision process.) At any given time, each player
has a hand (which is visible to only them), a deck (which no
one can see), and a face-up discard pile. The game begins with
a shared “Supply” of card piles in the middle, from which
players can purchase cards. Each pile has a multiplicity of
eight or more, so more than one player can get copies of the
same card. Some of these card types (standard Victory and
Treasure cards) are in every game, while others (including
Actions) are randomly selected from a larger pool of possible
cards before each game, making every game of Dominion
unique.

Fig. 1. Example Treasure, Victory, and Action

Each player starts the game with a small deck consisting
only of Estates (the least valuable Victory card), and Coppers
(the least valuable Treasure card). A turn consists of an
“Action” phase, during which the player can play Actions;
a “Buy” phase, during which a player can buy new cards to
add to her discard pile; and a “cleanup” phase, upon which
her hand, and all actions and treasures that were played, are
discarded, and a new hand is drawn from the deck. When
the deck runs out, the player shuffles her discard pile and it
becomes her deck. In this way, because cards that are used
are recycled rather than thrown away, a player’s deck can
grow better and better over time, as they use the cards they
already have to buy more and better cards. The game ends
when all Provinces (the most valuable victory card) have been
bought, or when three other piles in the Supply are emptied.



The player with the most Victory points wins the game. An
even more detailed description of the rules can be found on
the Dominion website.

B. Game Engine

In order to conduct simulations with computer players,
allowing them to play against each other and against people,
we constructed a Dominion engine in Python.

C. Modeling Dominion

Whenever it is her turn, a Dominion player must make
decisions about which cards to play in her Action phase, (and
sometimes, additional choices as required by these Actions),
and what cards to purchase during her buy phase. All of these
decisions constitute “actions” in the broader game-playing
sense of the term. These actions occur under conditions of
uncertainty due principally to (a) the random order of cards
in their deck upon shuffling; and (b) the unpredictable choices
made by other players. The full state of a game of Dominion
can be described by:
• The cards remaining in the Supply.
• Each player’s hand, deck, and discard pile.
• Whose turn it is, what phase of their turn it is, and what

they’ve done so far this turn (i.e. extra spending power
or buys earned by Actions they have already played).

Given that in any game of Dominion, the Supply has
upwards of 20 card types with multiplicity between 8 and 60,
the possible permutations of hands, decks, discards, and cards
in play is unimaginably large. The fact that some cards in the
Supply are chosen randomly to be included before the game
starts just increases this state space any more. This is what
makes Dominion such a fun and novel game for humans to
play, but it also explains why our agent’s ability to generalize
will be crucial.

We model Dominion as a Markov decision process, where
the state is described by a set of relevant features that an actual
person playing the game would have access to, namely her
own hand, the cards in the Supply, the Victory points collected
by each player, [insert more features here]. Of course, these
features do not specify the complete game state, but our
conjecture is that they provide enough information to learn
what choices and what states are better or worse, and to
generalize between similar-but-not-identical states.

Transitions between states depend on the behavior of other
players, so they are not truly “random” (unless the agent
is playing against a player who makes decisions randomly).
However, our choice to model this problem as a Markov
decision process means that we are effectively treating the
decisions of other players as stochastic. Though this might
mean we do not learn a perfect strategy, it is reasonable
to think we could learn a pretty good one, especially given
that there are only moderate amounts of interaction between
players (players share a Supply and some Actions attack other
players, but each player is otherwise building up her deck
isolation).

The primary objective of a Dominion game, like most
adversarial games, is to win. Thus, the principal “reward” is
given to an agent if it wins the game (+100). Winning by more
is generally considered good, so the reward is larger if you
trounce your opponents (+10 × margin of victory). Finally, we
include some negative rewards for behavior that is obviously
idiotic, such as not buying anything when the agent has a
lot of money. We also penalize players for games that take
an unreasonable number of turns (hundreds and hundreds),
because if everyone behaves reasonably, games should not
take this long, and it is bad for training, as well as in the
real world, for games of Dominion to drag on for hours. (We
recognize that part of the value of AI agents is learning things
human intuition might not pick up on, but some guardrails
are necessary for learning to happen at a reasonable pace and
achieve helpful results.)

D. Problems with Perceptron

To perform the learning task, we initially attempted SARSA
with global approximation, using a perceptron to generalize to
unseen states, using features from the observable game state,
as described above. However, this turned out to be intractable
for two reasons:
• (1) There are many possible distinct actions: during the

Action phase, a player can play any card from her hand
that is an Action; and during the Buy phase, a player can
buy any card she can afford. Playing an Action can also
trigger “sub-actions” (e.g. selecting which card to gain or
which card to trash). Because a perceptron has a different
set of weights for each action, attempting to use it was a
nightmare because actions are so numerous and varied.

• (2) The engine is built such that the “actions” a player
actually has access to are not cards, but keystrokes. (For
example, to buy a Silver, one would press 3 during the
Buy phase.) This means that playing Dominion with our
engine is much like playing Atari: the same input can
mean vastly different things in different contexts.

Because of these difficulties, we decided to use deep rein-
forcement learning instead. The advantage of this is that a
neural network can “learn” more complicated, abstract features
from granular, basic inputs. Instead of us having to somehow
communicate that inputting 3 will buy a Silver in such-and-
such a context, we push this into the learning task instead.

E. Deep Learning Architecture

1) Basic Idea: Our final learner was based on SARSA
using a neural network for global approximation. In this
scheme, input features are passed through layers of successive
neurons, each of which compute a linear combination of the
previous inputs and applies a nonlinear activation function
to the result. At a basic level, this is similar to stacking
perceptrons on top of one another. The advantage of this,
as described before, is that a neural network can infer more
abstract things from basic input features (for example, that
pressing 1 during the Buy phase will buy a Copper). means
buying a Copper, for example). The network accepts an input

http://riograndegames.com/Game/1312-Dominion-2nd-edition


vector, which encodes various features about the state and
action. In contrast to the perceptron approach, we do not need
different weights for each action: we push the task of varying
weights depending on the action into the neural network.

We designed a content-associative tower architecture in-
spired by the way human players may group and process
information. If a player sees information about their hand,
they may derive some high-level strategy from it. This is then
combined with their intuitions about their deck or the state
of the game, which contribute to a final decision about what
action to take. As a result, our input features are segmented
and fed to several “towers” which process the content and
derive a latent representation of it. These representations are
concatenated and fed through more dense layers to derive the
Q-Value. This is visualized in Figure 2 below.

Fig. 2. Deep Learning Architecture

2) More Technical Notes: Our network was relatively small
(∼12,000 parameters), relying on the content-associative ap-
proach rather than a “brute-force” approach with more layers
and neurons, which eased the training time. The “hand”
features are one-hot vectors encoding up to 15 cards in the
player?s hand. The respective tower uses a 1D convolution
to apply a filter the size of the number of cards in the game
to each ‘, allowing for parameters to be shared. These filters
can be thought of as mini-evaluations of different aspects of
fitness and utility of cards in hand The initial layers used a
ReLU activation (Rectified Leaky Unit), while later layers used

a sigmoidal activation. The final layer consisted of one neuron
with a linear activation (to predict Q-values). The model was
built in Keras and trained using Adam optimization (a more
stable optimizer than gradient descent) to minimize mean
squared error. Rather than a traditional SARSA update with a
learning rate, we simply re-estimate Q̂(s, a) = r+γQ(s′, a′),
and ‘tell’ the model that this is the correct answer, and rely
on it to update the weights accordingly.

While the neural network architecture helped with the
intractable action space problem, it suffered due to sparse
reward. Games consist of hundreds of decisions, and the
reward for most of them is zero. A neural network can cheat
and guess zero most of the time and do pretty well. To help
this, we introduced eligibility traces to assign credit from the
end-game reward to past decisions. To implement this, we
only trained the neural network after an entire game, and
we distributed the final reward (with decay) back through the
rewards vector.

IV. EXPERIMENTS AND RESULTS

A. Overview of Experiments

As a baseline, we created an computer player (“Random”)
which does no learning whatsoever, and selects a random
action. Then we conducted a few experiments that involved our
RL agent (“Learner”) playing games against Random, against
other Learners (which were first trained against Random), and
iteratively against itself.

B. Learner vs. Random

After training our Learner only one game against a Random
opponent, it was able to beat a Random opponent in 100% of
games afterwards. In this experiment, the Learner appeared to
learn a policy of buying mostly Silvers and Provinces, which
is a simple but fairly good strategy (it would have been even
better if it learned to buy Gold). What we took away from
this is that our Learner would probably need to play against a
better player than Random to get very good at the game, since
beating the baseline was so trivial that it only took one game
of training.

C. Genetic-Style “Bracket” of Learners

Our next idea was to first train a bunch of Learners vs.
a Random opponent, and then use a bracket to play those
Learners against one another, resulting in a sort of “survival
of the fittest,” in which we would expect the winner of the
tournament to be better than just an agent trained against
a Random opponent. The problem with this is that as you
scale up the number of levels of the bracket, the number of
agents required grows exponentially, and training is quite time-
consuming (it takes several minutes to play a game and learn
from it). This means, for example, that to have a “level-5”
agent, even training on only one game each time, we would
need 16 games vs. Random, then 8 games between “level-1”
agents, 4 games between “level-2” agents, 2 games between
“level-3” agents, and finally a face-off between two “level-
4” agents. This blows up quickly, and we found that the



agents weren’t improving that quickly, so getting significant
improvement would require more time and resources than we
had access to.

D. Iterative Self-Play

For this experiment, we “fixed” a particular Dominion game
(i.e. selected the cards in the Supply and kept them the same
for each game, and then played the same Learner against itself
iteratively. After each game, we trained on the new experience
of both the winner and the loser. This had a few advantages.
First, the shared model meant we were only improving and
updating one thing over time, rather than training tons of
Learners only to later discard them. Second, we learned from
both winning and losing, which seems valuable. Third, we
were able to observe the “loss” in predicting Q-values over
time, which seems like a reasonable way to measure whether
we are improving. The chart below shows that, after a few
games where the loss increases (presumably because all Q-
values are initialized to 0, and so “bootstrapping” shows
minimal loss because there’s little difference), we begin to
see it steadily decrease after each game. It seems reasonable
to conclude from this that our agent is improving!

Fig. 3. Average Q-Value Prediction Loss Per Turn Over 30 Self-Play Iterations

V. DISCUSSION

The results of our experiments suggest that a content-
associative architecture appears to work well in generalizing
the state-action features we extracted. In one early trial (against
random agent), one agent stumbled upon the strategy of buying
Silvers, then Provinces (the highest-VP card):

Game Log:
Player 1 (Computer) bought Silver
Player 2 (Computer) bought Copper
Player 1 (Computer) bought Province

The issue with limited training is that games are randomly
configured with sets of cards, breeding different strategies. A
Learner would have to play many games in order to generalize
well, which we unfortunately did not have time to do.

Iterative self training proved to be the most efficient way of
bootstrapping training once the Learner could beat Random.
We did not train for very long (a day), but the Learner still

learns some strategies. We invite you to play with the agent
yourself!

Github: https://github.com/garrickf/cs238-dominion

VI. CONCLUSION

In conclusion, we found that neural networks are good for
learning to play Dominion. The network we designed learns
generally good things to buy; however, it tends to not be
very good with playing actions, probably because of the large
amount of experience one would need to understand what
the action is useful for. With more time and resources, we
would have liked to train more expressive networks with more
parameters; and to experiment with extracting more features
(such as about the progression of the game, the players overall
deck, and information they may know about the other players,
such as the VP or treasures they have). These features may
be what?s needed for the network to develop more complex
strategies.

VII. ATTRIBUTION

Garrick built the game engine and the deep learning ar-
chitecture. Ben worked on feature extraction and SARSA
implementation, and took the lead on writing this paper.

ACKNOWLEDGMENT

We want to thank Professor Kochenderfer for his enjoyable
and well-taught class, Decision Making Under Uncertainty.
We would also like to thank the community of Synergy House,
especially David Gonzalez, for getting the two of us interested
in the game of Dominion in 2017.

REFERENCES

[1] Watkins, C.J.C.H. (1989). Learning from delayed rewards. PhD Thesis,
University of Cambridge, England.

[2] Rummery, G. and Niranjan, M. (1994). On-Line Q-Learning Using
Connectionist Systems. Cambridge University Engineering Department,
University of Cambridge, England.

[3] Mykel J. Kochenderfer (2015). Decision Making Under Uncertainty:
Theory and Application. MIT Press, Cambridge, MA.

[4] Vincent Franois-Lavet, Peter Henderson, Riashat Islam, Marc G. Belle-
mare and Joelle Pineau (2018). “An Introduction to Deep Reinforcement
Learning.” Foundations and Trends in Machine Learning: Vol. 11, No.
3-4.

[5] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Belle-
mare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G.,
Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran,
D., Wierstra, D., Legg, S. & Hassabis, D. (2015). “Human-level control
through deep reinforcement learning.
Nature, 518, 529–533.

[6] Silver, D., Huang, A., Maddison, C. et al. (2016). “Mastering the game
of Go with deep neural networks and tree search.” Nature 529, 484?489

[7] Alqatari, Ammar, Gaiarin, Ben, and Vobejda, Michael. “Agent Q Plays
Texas Hold’em.”

[8] Brown, Liam, and Crowley, Jeremy. “Perceptron Q-Learning Applied to
Super Smash Bros Melee.”

https://github.com/garrickf/cs238-dominion

	Introduction
	Related Work
	Reinforcement Learning and Deep RL
	Game-Playing with RL

	Problem and Approach
	The Game of Dominion
	Game Engine
	Modeling Dominion
	Problems with Perceptron
	Deep Learning Architecture
	Basic Idea
	More Technical Notes


	Experiments and Results
	Overview of Experiments
	Learner vs. Random
	Genetic-Style ``Bracket'' of Learners
	Iterative Self-Play

	Discussion
	Conclusion
	Attribution
	References

