
Transformers Memo 1

🤖
Transformers Memo

Prelude
Required Background
This document assumes that you have some familiarity with neural networks and training them
(and all the machine learning, linear algebra and vector calculus that entails). Terms like
“gradient”, “parameters”, “softmax”, and “regularization” will be tossed around without

Prelude
Required Background
Word Embeddings

Transformer Architecture & Attention
The Idea of Attention

Attention in Recurrent Neural Networks
Self-Attention Without RNNs
Fancier Self-Attention: Queries, Keys, and Values
Multi-Head Attention

The Transformer Encoder
Positional Encodings
Layer Normalization
Dropout
Position-Wise Feed Forward Network
All Together: The Encoder Block & Transformer Encoder

The Transformer Decoder
Decoding: Training vs. Inference
Masked Multi-Head Self-Attention
Encoder-Decoder Attention
Putting it All Together: The Decoder Block & Transformer Decoder

Using Transformers for Self-Supervised Pretraining
BERT (2018)
GPT (2018)

Transformers Memo 2

accompanying explanation. Other than that, I am basically assuming that you haven’t heard of a
Transformer, and am building intuition from the ground up, starting with self-attention. If you
don’t have this background, I’d suggest getting up to speed on that first before reading this.

Word Embeddings
Implicit in all following discussion of machine translation and language modeling is that you can
feed “words” to a neural network. Of course, neural networks speak in numbers, not words, so
words have to be represented as a word embedding vector in . There is a fixed vocabulary,
and each word in the vocabulary corresponds to a d-dimensional vector in a lookup table. In the
past, these might have been learned separately (via a procedure like GloVe or Word2Vec), and
then taken as fixed inputs to the model. In more recent research, including the Transformer,
embeddings are initialized randomly, and learned during training to minimize loss.

For open-vocabulary tasks (where we want the model to be able to understand words it may not
have seen during training), sub-word units—chunks of words, characters, or Unicode code-points
—are used instead of words. Whether using words or sub-words, an important preprocessing step
is to break pieces of text into tokens (words or sub-words), then map these tokens to integer
indices into the vocabulary. It is these integer indices, rather than passages of text, that are fed
directly to the neural network.

Transformer Architecture & Attention
The Transformer model originates from the 2017 paper “Attention is All You Need” (Vaswani et
al.). The Transformer was conceived as a method for sequence-to-sequence mapping for machine
translation, but the attention-based encoder and decoder introduced in the paper have spread like
wildfire, and have been used to great effect for all sorts of language-modeling tasks. Pretty much
all recent state-of-the-art work in large language models (BERT, GPT-3, etc.) is derived from this
attention-based architecture. It has also caught on in computer vision, and more recently, even
reinforcement learning! In this section, I’ll give a high-level overview of what attention is, and
how transformers use it to model sequences in the natural language setting.

The Idea of Attention
N.B. — for a more detailed/visual explanation, see this article or this video.

Attention in Recurrent Neural Networks

Rd

https://nlp.stanford.edu/projects/glove/
https://arxiv.org/pdf/1301.3781.pdf
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2106.01345
https://peterbloem.nl/blog/transformers
https://www.youtube.com/watch?v=0SmNEp4zTpc&list=PLDw5cZwIToCvXLVY2bSqt7F2gu8y-Rqje&index=1

Transformers Memo 3

Before the advent of transformers, neural machine translation (translating from language to
another using neural networks) was based on recurrent models, which processed the input
sentence one word at a time using shared weights, generating a new hidden state for each
position in the input sentence (based on and the -th word in the sentence). At the end of
the sequence, the final hidden state would be used as the representation of the whole sentence.
This was limiting, because all the information from the whole sentence had to be compressed
into that one state. It rendered models unable to deal effectively with longer sentences.

Attention was initially popularized as a solution to this problem: instead of just using the final
hidden state to represent the sentence, Bahdanau et al. proposed using all of the hidden states
(one for each input word) to represent the sentence. At each step of decoding (where the
representation of the input sentence is “decoded” into the target language one word at a time), the
hidden states are averaged, weighted by their relevance to the current step of decoding. In this
way, the decoder can assign more weight (“pay attention”) to hidden states that are most relevant
to the current decoding step. The weights, i.e. the relevance of one vector to another, can be
determined most simply by a dot product. This (roughly) works because vectors that point in
similar directions tend to have more positive dot products, and vectors that are opposite or
orthogonal have smaller or negative dot products. The raw scores of the dot product are then
normalized by a softmax function.

ht
t ht−1 t

Recurrent neural network encoding a sequence.

https://arxiv.org/abs/1409.0473

Transformers Memo 4

Self-Attention Without RNNs
Attention caught on as a way to improve recurrent models for machine translation, as described
in the previous section. But it really took off with the seminal paper, “Attention is All You
Need,” by Vaswani et al. This paper dispenses with the recurrent, “one-word-at-a-time”
architecture in favor of what it calls the Transformer, which processes an entire sequence in
parallel. In order to capture dependencies between words (or tokens) in a sequence, the authors
use self-attention, which is like the attention mechanism discussed before, but applied reflexively
to compute the relevance of words in a sequence with respect to each other (rather than with
respect to a separate decoder state).

This can be hard to grasp at first, but it helps to think about attention as a function. This function
takes a sequence and a query , and outputs a weighted average of the elements of , where
the weights for each are determined by their relevance to (for now, measured by a dot
product).

Dot-product attention weights. Source: Chris Manning’s CS224N slides.

S

S x S

si x

https://arxiv.org/abs/1706.03762

Transformers Memo 5

Note: In these equations, we treat as a matrix, where is the sequence length, and
is the embedding dimension. (Visually, the sequence looks like a stack of vectors.)

As before, weights are computed first by taking the dot product of with
each element of , and then the elements of are averaged using these weights. Self-attention
is just a specific case where itself is an element of . To compute self-attention for an entire
sequence, we just compute for all .

To “vectorize” this computation, we can compute the weights () for all pairs of
elements in at once with one matrix multiplication, and normalize row-wise with a softmax:

The -th entry of the matrix represents the attention weight between and .
For example, for the toy sentence “Hello I love you,” we would compute the weight (relevance)
of each word to each other word, giving the weight matrix below.

Attn(S,x) = w s

i=1

∑
∣S ∣

i i

...where =w Softmax Sx()

S n× d n d

w ,w ,…,w1 2 ∣S ∣ x

S S

x S

Attn(S, s)i s ∈i S

Reflexively applying the attention function to a sequence S.

w =ij s ⋅i sj
S

W =Attn Softmax(SS)⊤

ij n× n WAttn si sj

Transformers Memo 6

Then, these weights are used in a weighted average to transform an input sequence
 into an equally-sized sequence , where each output is an

attention-weighted average of the elements of , based on their relevance to . (In our running
example, notice that each row of the matrix sums to 1; each row is a set of weights used to
average the sequence.)

Vectorized, this looks like multiplying the matrices and so that each output element
is equal to a weighted average of ’s, weighted by the relevant row of .

What is this doing, exactly? Intuitively, by applying attention to a sentence, the embedding
(”meaning”) of a word or sequence element “absorbs” some information from its neighbors,
creating a richer representation that is influenced by the context.

Fancier Self-Attention: Queries, Keys, and Values
One thing you might think is missing from the previous exposition is the opportunity for
learning. As laid out above, self-attention is a deterministic (though complicated!) function of
the input sequence , with no trainable parameters. Sure, the gradients can propagate through
one or more attention layers back to the original (trainable) word embeddings, but the attention
layers themselves are not parameterized, so they can’t specialize or learn anything to solve the
specific task at hand. Using just a dot product to measure similarity is a crude approach as well—
the network can’t learn which things should be similar, it is hard coded into the embeddings.

Simple self-attention matrix.

(s , s ,…, s)1 2 n (z , z ,…, z)1 2 n zi
S si

WAttn S zi
si WAttn

Out =W SAttn

S

Transformers Memo 7

The introduction of queries, keys, and values (introduced in Attention is All You Need) brings
trainable parameters into the attention layer, allowing it to adapt as the neural network trains. To
understand the motivation for queries, keys, and values, recognize that in a self-attention layer,
each input element plays several roles:

1. It acts as the query that all elements in the sequence are compared to to assess their
similarity, to compute attention weights in .

2. It acts as the key, as an element of , when its similarity is compared to the query , also to
compute the attention weight between itself and .

3. It acts as the value for averaging, i.e. the in .

It makes sense (in the self-attention setting) to allow these three to be different vectors, and to be
learned rather than fixed. This allows the model to flexibly “learn” how to copy information
from one position in the sequence to another. To do this, we modify self-attention by using three
different linear projections of for these three different roles. The weights ()
of these projections are learned as the model is trained.

The self-attention computation is the same as before, but with these values replacing for each
of its roles. Here is what the vectorized computation would look like for the whole sequence :

Note: Vaswani et al. also introduce the idea of dividing by a constant factor , the
square root of the dimension of queries, keys, and values, in order to stop vanishing gradients
when the embedding dimension is large.

si

x

Attn(S,x)

S x

x

si w s∑i i i

si W ,W ,WQ K V

q =i W sQ i

k =i W sK i

v =i W sV i

si
S

Q = SW , K =Q SW , V =K SWV

W =Attn Softmax(
dk

QK⊤

)

Attn(S,S) =W VAttn

QK⊤ dk

Transformers Memo 8

The whole process is summarized below, mostly zoomed in on the self-attention computation for
the first element of the input sequence (here,), mapping it all the way to the first element of
the output sequence (here,).

Multi-Head Attention
The fancier query-key-value attention outlined above is great! But, we might still have
complaints—with only one set of (learned) weights for projecting all tokens into queries, keys,
and values, we have a bit of a one-size-fits-all solution. It’s also difficult for a query to attend to
multiple positions at the same time, since with softmax, the largest value dominates (hence the
“max”). To introduce even more flexibility, and allow more “representational subspaces” in the
self-attention layer, we repeat the attention computation multiple times, with a different set of

. (In practice, these multiple attention computations can all happen in parallel.)

Each iteration of the attention computation is called an attention head. This means instead of just
one output, a self-attention layer with h heads produce a stack of h different outputs. Since each
set of weights is different, each output in the stack is different, and can attend to a different set of
interrelationships among the tokens in the sequence.

z1
o1

W ,W ,WQ K V

Transformers Memo 9

Afterwards, the stack of outputs is concatenated and projected back to the embedding dimension
. (We often want to apply many self-attention layers one after the other, and don’t want the

output size to grow exponentially.) It is also common to have (the dimension of projected
keys, queries, and values) smaller than , so that introducing multi-head attention does not make
the model much larger and slower. Often, (where is the number of attention
heads) but this is not strictly necessary.

That’s nearly all you need to know about attention to understand the most basic (encoder-only)
Transformer. There are a few extra tricks used in the Transformer decoder, which we’ll talk
about later. But the backbone, and the source of the main benefits of the Transformer, is self-
attention, which allows all pairs of sequence items to interact while processing inputs in parallel,

Attention computation with three heads.

d

dk
d

d = d ∗k h h

Concatenating and projecting the result to match the input dimension.

Transformers Memo 10

overcoming many weaknesses of the previous generation of models, and resulting in much better
performance on GPUs, which are optimized for many parallel matrix multiplications.

The Transformer Encoder
The original Transformer was designed for neural machine translation, i.e. to translate a sentence
from one language to another. Though attention is the backbone of the model, it doesn’t quite get
us there on its own. There are a few other building blocks that make up the Transformer (and are
used, in various forms, in pretty much all Transformer-y models like BERT and GPT-3).

Positional Encodings

Transformer architecture. Source: Vaswani et al.

Transformers Memo 11

Unlike recurrent neural networks they’ve largely replaced, where tokens are fed to the model
one at a time, transformers digest a sequence all at once. And unlike convolutional neural
networks, which employ sliding windows to compute functions of “nearby” values, there is no
notion of “local” relationships, as the Transformer computes self-attention of all input vectors
with respect to all input vectors for the entire sequence, and then summarizes the result. This is
why it is permutation-invariant: if you shuffle the input, you’d get back a shuffled output, but
otherwise identical, output. This poses a problem, since the order of words in a sentence actually
matters. “The dog bit the man” means something different than “the man bit the dog.” Because
the Transformer doesn’t really have a notion of order, we have to add information to give the
model a hint about the order of tokens in the input sequence: a positional encoding.

In practice, the way this is done in the original Attention is All You Need paper is with periodic
functions of various wavelengths. For each position we compute a series of sine
and cosine functions to get position vectors . Certain mathematical properties
of these periodic functions make them useful for allowing the model to attend to relative
positions. (If you’re interested, you can read a much more detailed explanation here.) These
vectors are then concatenated or added to the input sequence Positional
encoding only happens once, right before the input sequence (i.e. a sequence of word embedding
vectors) is fed to the model.

An alternative approach is to use a learnable positional embedding, which is also added to the
word embeddings before they are fed to the model. Since the original Transformer paper, many
other ways of informing the model of absolute or relative positions of tokens have been
proposed, but those details are outside the scope of this memo.

Layer Normalization
Various forms of normalization and standardization are common in machine learning in order to
improve learning. Historically, inputs to machine learning models would be normalized,
standardized, or whitened before being fed to the model. A more recent proposal is to explicitly
include normalization at multiple stages of neural network architectures, rather than simply as a
data preprocessing step. Because normalization (subtracting a mean, dividing by standard
deviation) is a mathematical operation like any other, we can compute gradients and back-
propagate through normalization layers. This helps training by reducing internal covariate shift,
i.e. the shifting distributions of values at each layer as parameters update, which can cause
problems with gradients and saturating/dying activation functions. Normalization helps networks
train faster, and even provides some regularization.

(1, 2,…,n)
(, ,…,)p1 p2 pn

(x ,x ,…,x).1 2 n

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Transformers Memo 12

BatchNorm proposes normalizing the same neuron across a batch of inputs. LayerNorm averages
in the other direction, i.e. across all neurons in a layer for a single training example. This has
some advantages over BatchNorm: it is agnostic to batch size, and it can be used in recurrent
architectures. In the Transformer, it is only used to average across the embedding dimension (i.e.
we normalize each element in the input sequence separately). After
normalization, there is a linear layer (i.e. multiply each neuron by a learned weight W and add a
bias b).

More recently, state-of-the-art architectures have omitted the bias b, and some have even argued
for a lightweight variant of LayerNorm that normalizes without centering (RMSNorm).

Dropout
Dropout is a regularization technique for neural networks that zeroes out neurons with some
small probability during training. This results in a model that is more robust—it can’t rely too
heavily on any particular neuron, and it prevents neurons from “co-adapting” and relying too
heavily on each other. This prevents the model from overfitting, and basically gives rise to a
neural network that, at test time, is equivalent the average of an “ensemble” of different neural
networks. Dropout is applied at various points in the Transformer for regularization.

Position-Wise Feed Forward Network
Each Transformer self-attention layer is followed by a “position-wise” feed-forward network,
which is a fancy way of saying the same small neural network is applied to each sequence
element . Each layer of the Transformer has its own separate position-wise feed-
forward network, but the same network is shared across sequence elements (i.e. the first word in
a sentence has the same feed-forward network applied to it as the last word).

s , s ,…, s1 2 n S

s , s ,…, s1 2 n

https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/pdf/1607.06450.pdf
https://arxiv.org/abs/1910.07467

Transformers Memo 13

All Together: The Encoder Block & Transformer Encoder
A Transformer encoder block is just a combination of two sublayers: multi-head self-attention,
followed by the position-wise feed-forward network. After each sublayer, a residual connection
is employed, which means that the input of the sublayer is added back to the output. This
approach (originating from the ResNet paper) helps with the problem of vanishing gradients, and
allows information to flow more easily between layers, allowing neural networks to get much
deeper without becoming impossible to train. This is followed by LayerNorm (together, “Add &
Norm”). Dropout is used before each Add & Norm step.

It has also become common to use dropout within self-attention layers (randomly drop some
units after the softmax), but this is not mentioned in the original Transformer paper. Newer
Transformer variants also often use a “pre-norm” (LayerNorm before the sublayer, rather than
after), which tends to make training a bit less finicky. (Vaswani et al. have to use a whole bag of
tricks like learning rate warmup to make their model improve stably.)

The Transformer encoder is one half of the Transformer model—the half which maps input
sequences to an embedding, which can then be used to output a translated sequence by the
decoder. The encoder comprises the embedding step and positional encoding for the input

https://arxiv.org/abs/1512.03385
https://arxiv.org/pdf/2002.04745.pdf

Transformers Memo 14

sequence, followed by multiple Transformer encoder blocks (as laid out above). The original
Transformer paper uses 6 blocks in the encoder.

The Transformer Decoder
N.B.—This section is a bit complicated, and you can skip it and still come away with decent
knowledge of self-attention, enough to understand how the Transformer is adapted for tabular
data. However, the decoder is relevant if you want to fully understand how the original
Transformer is used as a sequence-to-sequence model (i.e. for machine translation), or
understand autoregressive large language models based on the Transformer decoder, such as
OpenAI’s GPT-3.

Decoding: Training vs. Inference
Recall that the goal of the Transformer is sequence-to-sequence translation. Once a sequence has
passed through the Transformer encoder, we have an output that is a representation of the input
sequence, . That is the encoding of the sequence. To get a legible output
sequence, we now have to decode this hidden representation.

During inference or deployment, we don’t have a target sentence (we don’t know the answer in
advance), and generate the output one word at a time. At each decoding step, the decoder
receives: (1) The encoding of the input sequence, and (2) The output sequence generated so far.
The decoder outputs a probability distribution over the next word, and we either sample from it,

Z = (z , z ,…, z)1 2 n

Transformers Memo 15

or greedily choose the next word, and add that to the output sequence so far. At the first step, we
only pass a [start of sequence] token. This means to generate a sequence of length , we have to
run the decoder times!

During training, the main difference is that we already know the target sentence, and we want to
encourage the model to produce that sentence. We don’t feed the decoder its own output to get
the next word like during deployment; instead we feed it the right answer so far, and make it
guess the next word (This is called teacher forcing). Suppose the correct translation is “I love
you a lot”, and we give the network the correct answer so far, which might be “I love.” The
network predicts the next word as “myself”, incorrectly. Rather than feeding in “I love myself”
to get the next word, we just feed in the correct answer, “I love you”.

Doing this naïvely, training takes as many decoding steps as deployment: we have to run the
decoder times to train on a target sentence of length , giving it more of the correct sentence
with each iteration, and making it predict the next word. Meanwhile, the decoder architecture
(which, like the encoder, takes a sequence and maps it to an equal-
length sequence) is producing output that is mostly discarded. What a waste! However, with the
help of one simple trick (masked self-attention), the architecture of the Transformer allows all of
these steps to happen in parallel—we can feed the entire target sequence to the decoder during
training, and use a mask on the attention matrix to stop it from “cheating” and looking ahead.
This mechanism, masked multi-head self-attention (or causal attention) is explained in the
following section.

Masked Multi-Head Self-Attention

k

k

Source: Lennart Sverson’s slides on Transformer models.

k k

S = (s , s ,…, s)1 2 k

https://chalmersuniversity.app.box.com/s/c2a64rz0hlp44pdouq9mc24msbz60xf2

Transformers Memo 16

The decoder receives two inputs: (1) the target sequence, and (2) the encoded input sequence
(output by the encoder). We want the output of the decoder to
correspond to a valid set of next-token predictions for the target sequence

, so that and so on. If we just used normal self-attention, the
decoder could just copy from the input and correctly output that , and do the same for
all , instead of learning to predict unseen words.

Masked multi-head self-attention insists that, during the attention computation (which creates a
new representation for each based on a weighted average of the whole sequence), only tokens
before can contribute information. All tokens after must not contribute, which means they
must have attention weight of 0. For instance, in the example below, the output (which aims
to predict) should only depend on , and not on or .

Once this objective is understood, masked self-attention is easy to implement: attention weights
are computed as normal, but before the softmax, all attention weights that would let information
flow from a later token to an earlier token are zeroed out (to be precise, set to). The result
looks something like the simple attention matrix below: for a given query, it can only have a non-
zero attention weight for keys that correspond to itself, and earlier tokens. This means that when
this attention matrix is used to compute a weighted average of values, the representation for a
given position (e.g. the word “love”) is only an average of the values for earlier tokens (”Hello”
and “I”), and itself.

Z = (z , z ,…, z)1 2 k

k T =
(t , t ,…, t)1 2 k z =1 t , z =2 2 t3

t2 z =1 t2
zi

ti
ti ti

y3
x4 x1:3 x4 x5

Source: Lennart Sverson’s slides on Transformer models.

−∞

https://chalmersuniversity.app.box.com/s/c2a64rz0hlp44pdouq9mc24msbz60xf2

Transformers Memo 17

After zeroing out the values, the softmax will normalize the weights to ensure they add up to 1
(which they do not in the illustration above). This masked self-attention is all that is needed to
allow parallelism during training. During testing/deployment, it also makes sense to use the
mask, since any sequence elements after the one you are trying to predict haven’t been output
yet, and are unknown/undefined.

Encoder-Decoder Attention
So far, we’ve only talked about the part of the decoder that processes the target sequence (during
training), or the generated sequence so far (during deployment). The last obvious piece is that
the decoder must digest the information about the input sequence from the encoder in order to
translate it! This is also done using attention—not unlike how it was used in recurrent models by
Bahdanau et al., where the representation of the input sequence is collapsed into a dynamic
weighted average of encoder states, based on their relevance to the current decoding step.

This attention block takes in two inputs: (1) the output of the previous decoder layer; and (2) the
final encoder output. (These sequences may have different lengths—for example, te amo in
Spanish translates to I love you in English, so the encoder sequence would have length 2, and the
target sequence would have length 3. However, both encoder and decoder work with sequences
of tokens that have the same embedding dimension .) The multi-head attention
computation is much the same, but unlike the self-attention computations outlined above, the

dmodel

https://arxiv.org/abs/1409.0473

Transformers Memo 18

queries come from the decoder sequence, and the keys and values come from the encoder. For
each decoder token , we use its queries compute its attention weights relative to
keys for each encoder token , giving a attention-weight matrix, which
captures the relevance of each encoder token to each decoder token.

Using the attention matrix, we compute a weighted average of the encoder state values
, for each decoder token, weighted by their relevance to that decoder token. The

result is a new sequence of length (matching the dimensions of the decoder), comprised of
information from the encoder (the decoder state only affects the weights). When this is added
and normed with the previous decoder state, information flows from the encoding of the input
sequence into the decoder, with attention paid to the most relevant parts of the input sequence.

t , t ,…, t1 2 m

e , e ,…, e1 2 n m× n

v , v ,…, v1 2 n

m

Transformers Memo 19

We don’t have to worry about masking here, because the decoder is supposed to
know/understand the entire input sequence—there’s nothing to hide there. And no decoder states
interact with one another during this attention computation—only with the encoder states.

Putting it All Together: The Decoder Block & Transformer Decoder

Transformers Memo 20

A Transformer decoder block is a combination of three sublayers: masked multi-head self-
attention, encoder-decoder attention, and finally a position-wise feed-forward network (as in the
encoder). Just like the encoder block, there is a residual connection, LayerNorm, and dropout
after each sublayer. The decoder is just a stack of decoder blocks. Each one takes two inputs:
(1) the encoder output (which is the same for all decoder blocks), and (2) the output of the
previous decoder block (or the target sequence for the very first decoder block). Finally, at the
end, a fully connected (linear) layer is used to project the decoder outputs so that they are the
size of the vocabulary, and then a softmax is applied to get probabilities of the next token at each
position.

Using Transformers for Self-Supervised Pretraining
The original Transformer was designed for a specific task (machine translation), and was trained
on the appropriate data (pairs of sequences from different languages), to learn embeddings and
weights to optimize performance on that task. However, later research leveraging transformers
introduced the idea of self-supervised pretraining: learning from a large amount of unlabeled

Source: Lennart Sverson’s slides on Transformer models.

N

N

https://chalmersuniversity.app.box.com/s/c2a64rz0hlp44pdouq9mc24msbz60xf2

Transformers Memo 21

data on a “pretext” task, and then fine-tuning the model on labeled data for a downstream task
(such as sentiment classification).

Transfer learning had been popular in computer vision for years (many tasks were improved by
transferring a model trained on ImageNet), and was used to a limited extent in natural language
processing (mostly pretraining word embeddings). ULMFiT (2018) was the first model to
successfully leverage self-supervised pretraining (with an LSTM model rather than a
transformer), but it was the incredible results achieved with transformers (beginning with BERT
and GPT) that made self-supervised pretraining ubiquitous in the language domain.

BERT (2018)
BERT, and later BERT-like architectures, use only the encoder part of the original Transformer
model. This means there is no masked attention, so every word in the output can be influenced
by every word in the input—there’s no autoregressive property. BERT is trained on a masked-
language-modeling objective (predicting words that are masked out in the input sentence), and a
next-sentence-prediction task (predicting if Sentence B followed Sentence A in the original
document). These are both semi-supervised tasks that can easily be done on a large amount of
free-text data, without any intensive manual labeling. As a result, BERT can be trained on
gigabytes of data and learn very informative representations for words and sequences, that can
then be fine-tuned on downstream tasks. Since BERT is designed to digest a whole sequence
without masking (i.e. attention can flow in both directions), it is generally used tasks that involve
understanding the sequence (i.e. classification, summarization) rather than predicting the next
token (that’s where GPT excels).

GPT (2018)
GPT, and its newer (larger) cousins GPT-2 and GPT-3, use only the decoder part of the
Transformer (omitting encoder-decoder attention, since there’s no encoder). As a consequence, a
given word ingested by GPT can only attend to words that came before it. This is important,
because the pretext task for GPT is next-token prediction (also called causal language modeling).
The model is fed tons of unlabeled text, and its task is to predict the next unseen token. GPT is
therefore a great model for generating text in response to some prompt, since all you have to do
is have it repeatedly predict the next token. Newer versions of GPT have been shown to be
effective at zero-shot and few-shot NLP tasks, simply by virtue of learning how to predict the
next token.

https://arxiv.org/pdf/1801.06146.pdf

