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Prelude
Required Background
This document assumes that you have some familiarity with neural networks and training them 
(and all the machine learning, linear algebra and vector calculus that entails). Terms like 
“gradient”, “parameters”, “softmax”, and “regularization” will be tossed around without 
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accompanying explanation. Other than that, I am basically assuming that you haven’t heard of a 
Transformer, and am building intuition from the ground up, starting with self-attention. If you 
don’t have this background, I’d suggest getting up to speed on that first before reading this.

Word Embeddings
Implicit in all following discussion of machine translation and language modeling is that you can 
feed “words” to a neural network. Of course, neural networks speak in numbers, not words, so 
words have to be represented as a word embedding vector in . There is a fixed vocabulary, 
and each word in the vocabulary corresponds to a d-dimensional vector in a lookup table. In the 
past, these might have been learned separately (via a procedure like GloVe or Word2Vec), and 
then taken as fixed inputs to the model. In more recent research, including the Transformer, 
embeddings are initialized randomly, and learned during training to minimize loss. 

For open-vocabulary tasks (where we want the model to be able to understand words it may not 
have seen during training), sub-word units—chunks of words, characters, or Unicode code-points
—are used instead of words. Whether using words or sub-words, an important preprocessing step 
is to break pieces of text into tokens (words or sub-words), then map these tokens to integer 
indices into the vocabulary. It is these integer indices, rather than passages of text, that are fed 
directly to the neural network.

Transformer Architecture & Attention
The Transformer model originates from the 2017 paper “Attention is All You Need” (Vaswani et 
al.). The Transformer was conceived as a method for sequence-to-sequence mapping for machine 
translation, but the attention-based encoder and decoder introduced in the paper have spread like 
wildfire, and have been used to great effect for all sorts of language-modeling tasks. Pretty much 
all recent state-of-the-art work in large language models (BERT, GPT-3, etc.) is derived from this 
attention-based architecture. It has also caught on in computer vision, and more recently, even 
reinforcement learning! In this section, I’ll give a high-level overview of what attention is, and 
how transformers use it to model sequences in the natural language setting.

The Idea of Attention
N.B. — for a more detailed/visual explanation, see this article or this video.

Attention in Recurrent Neural Networks

Rd

https://nlp.stanford.edu/projects/glove/
https://arxiv.org/pdf/1301.3781.pdf
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2106.01345
https://peterbloem.nl/blog/transformers
https://www.youtube.com/watch?v=0SmNEp4zTpc&list=PLDw5cZwIToCvXLVY2bSqt7F2gu8y-Rqje&index=1
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Before the advent of transformers, neural machine translation (translating from language to 
another using neural networks) was based on recurrent models, which processed the input 
sentence one word at a time using shared weights, generating a new hidden state  for each 
position  in the input sentence (based on  and the -th word in the sentence). At the end of 
the sequence, the final hidden state would be used as the representation of the whole sentence. 
This was limiting, because all the information from the whole sentence had to be compressed 
into that one state. It rendered models unable to deal effectively with longer sentences.

Attention was initially popularized as a solution to this problem: instead of just using the final 
hidden state to represent the sentence, Bahdanau et al. proposed using all of the hidden states 
(one for each input word) to represent the sentence. At each step of decoding (where the 
representation of the input sentence is “decoded” into the target language one word at a time), the 
hidden states are averaged, weighted by their relevance to the current step of decoding. In this 
way, the decoder can assign more weight (“pay attention”) to hidden states that are most relevant 
to the current decoding step. The weights, i.e. the relevance of one vector to another, can be 
determined most simply by a dot product. This (roughly) works because vectors that point in 
similar directions tend to have more positive dot products, and vectors that are opposite or 
orthogonal have smaller or negative dot products. The raw scores of the dot product are then 
normalized by a softmax function.

ht
t ht−1 t

Recurrent neural network encoding a sequence.

https://arxiv.org/abs/1409.0473
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Self-Attention Without RNNs
Attention caught on as a way to improve recurrent models for machine translation, as described 
in the previous section. But it really took off with the seminal paper, “Attention is All You 
Need,” by Vaswani et al. This paper dispenses with the recurrent, “one-word-at-a-time” 
architecture in favor of what it calls the Transformer, which processes an entire sequence in 
parallel. In order to capture dependencies between words (or tokens) in a sequence, the authors 
use self-attention, which is like the attention mechanism discussed before, but applied reflexively 
to compute the relevance of words in a sequence  with respect to each other (rather than with 
respect to a separate decoder state). 

This can be hard to grasp at first, but it helps to think about attention as a function. This function 
takes a sequence  and a query , and outputs a weighted average of the elements of , where 
the weights for each  are determined by their relevance to  (for now, measured by a dot 
product).

Dot-product attention weights. Source: Chris Manning’s CS224N slides.

S

S x S

si x

https://arxiv.org/abs/1706.03762
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Note: In these equations, we treat  as a  matrix, where  is the sequence length, and  
is the embedding dimension. (Visually, the sequence looks like a stack of vectors.)

As before, weights  are computed first by taking the dot product of  with 
each element of , and then the elements of  are averaged using these weights. Self-attention 
is just a specific case where  itself is an element of . To compute self-attention for an entire 
sequence, we just compute  for all . 

To “vectorize” this computation, we can compute the weights ( ) for all pairs of 
elements in  at once with one matrix multiplication, and normalize row-wise with a softmax: 

The -th entry of the  matrix  represents the attention weight between  and . 
For example, for the toy sentence “Hello I love you,” we would compute the weight (relevance) 
of each word to each other word, giving the weight matrix below.

Attn(S,x) = w s

i=1

∑
∣S ∣

i i

...where   =w Softmax Sx( )

S n× d n d

w ,w ,…,w1 2 ∣S ∣ x

S S

x S

Attn(S, s )i s ∈i S

Reflexively applying the attention function to a sequence S.

w =ij s ⋅i sj
S

W =Attn Softmax(SS )⊤

ij n× n WAttn si sj
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Then, these weights are used in a weighted average to transform an input sequence 
 into an equally-sized sequence , where each output  is an 

attention-weighted average of the elements of , based on their relevance to .  (In our running 
example, notice that each row of the matrix sums to 1; each row is a set of weights used to 
average the sequence.)

Vectorized, this looks like multiplying the matrices  and  so that each output element  
is equal to a weighted average of ’s, weighted by the relevant row of . 

What is this doing, exactly? Intuitively, by applying attention to a sentence, the embedding 
(”meaning”) of a word or sequence element “absorbs” some information from its neighbors, 
creating a richer representation that is influenced by the context.

Fancier Self-Attention: Queries, Keys, and Values
One thing you might think is missing from the previous exposition is the opportunity for 
learning. As laid out above, self-attention is a deterministic (though complicated!) function of 
the input sequence , with no trainable parameters. Sure, the gradients can propagate through 
one or more attention layers back to the original (trainable) word embeddings, but the attention 
layers themselves are not parameterized, so they can’t specialize or learn anything to solve the 
specific task at hand. Using just a dot product to measure similarity is a crude approach as well—
the network can’t learn which things should be similar, it is hard coded into the embeddings.

Simple self-attention matrix.

(s , s ,…, s )1 2 n (z , z ,…, z )1 2 n zi
S si

WAttn S zi
si WAttn

Out =W SAttn

S
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The introduction of queries, keys, and values (introduced in Attention is All You Need) brings 
trainable parameters into the attention layer, allowing it to adapt as the neural network trains. To 
understand the motivation for queries, keys, and values, recognize that in a self-attention layer, 
each input element  plays several roles:

1. It acts as the query  that all elements in the sequence are compared to to assess their 
similarity, to compute attention weights in .

2. It acts as the key, as an element of , when its similarity is compared to the query , also to 
compute the attention weight between itself and .

3. It acts as the value for averaging, i.e. the  in .

It makes sense (in the self-attention setting) to allow these three to be different vectors, and to be 
learned rather than fixed. This allows the model to flexibly “learn” how to copy information 
from one position in the sequence to another. To do this, we modify self-attention by using three 
different linear projections of  for these three different roles. The weights ( ) 
of these projections are learned as the model is trained.

The self-attention computation is the same as before, but with these values replacing  for each 
of its roles. Here is what the vectorized computation would look like for the whole sequence :

Note: Vaswani et al. also introduce the idea of dividing by a constant factor , the 
square root of the dimension of queries, keys, and values, in order to stop vanishing gradients 
when the embedding dimension is large.

 

si

x

Attn(S,x)

S x

x

si w s∑i i i

si W ,W ,WQ K V

q =i W sQ i

k =i W sK i

v =i W sV i

si
S

Q = SW , K =Q SW , V =K SWV

W =Attn Softmax(
dk

QK⊤

)

Attn(S,S) =W VAttn

QK⊤ dk
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The whole process is summarized below, mostly zoomed in on the self-attention computation for 
the first element of the input sequence (here, ), mapping it all the way to the first element of 
the output sequence (here, ).

Multi-Head Attention
The fancier query-key-value attention outlined above is great! But, we might still have 
complaints—with only one set of (learned) weights for projecting all tokens into queries, keys, 
and values, we have a bit of a one-size-fits-all solution. It’s also difficult for a query to attend to 
multiple positions at the same time, since with softmax, the largest value dominates (hence the 
“max”). To introduce even more flexibility, and allow more “representational subspaces” in the 
self-attention layer, we repeat the attention computation multiple times, with a different set of

. (In practice, these multiple attention computations can all happen in parallel.) 

Each iteration of the attention computation is called an attention head. This means instead of just 
one output, a self-attention layer with h heads produce a stack of h different outputs. Since each 
set of weights is different, each output in the stack is different, and can attend to a different set of 
interrelationships among the tokens in the sequence.

z1
o1

W ,W ,WQ K V
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Afterwards, the stack of outputs is concatenated and projected back to the embedding dimension 
. (We often want to apply many self-attention layers one after the other, and don’t want the 

output size to grow exponentially.) It is also common to have  (the dimension of projected 
keys, queries, and values) smaller than , so that introducing multi-head attention does not make 
the model much larger and slower. Often,  (where  is the number of attention 
heads) but this is not strictly necessary.

That’s nearly all you need to know about attention to understand the most basic (encoder-only) 
Transformer. There are a few extra tricks used in the Transformer decoder, which we’ll talk 
about later. But the backbone, and the source of the main benefits of the Transformer, is self-
attention, which allows all pairs of sequence items to interact while processing inputs in parallel, 

Attention computation with three heads.

d

dk
d

d = d ∗k h h

Concatenating and projecting the result to match the input dimension.
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overcoming many weaknesses of the previous generation of models, and resulting in much better 
performance on GPUs, which are optimized for many parallel matrix multiplications.

The Transformer Encoder
The original Transformer was designed for neural machine translation, i.e. to translate a sentence 
from one language to another. Though attention is the backbone of the model, it doesn’t quite get 
us there on its own. There are a few other building blocks that make up the Transformer (and are 
used, in various forms, in pretty much all Transformer-y models like BERT and GPT-3). 

Positional Encodings

Transformer architecture. Source: Vaswani et al.
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Unlike recurrent neural networks they’ve largely replaced, where tokens are fed to the model 
one at a time, transformers digest a sequence all at once. And unlike convolutional neural 
networks, which employ sliding windows to compute functions of “nearby” values, there is no 
notion of “local” relationships, as the Transformer computes self-attention of all input vectors 
with respect to all input vectors for the entire sequence, and then summarizes the result. This is 
why it is permutation-invariant: if you shuffle the input, you’d get back a shuffled output, but 
otherwise identical, output. This poses a problem, since the order of words in a sentence actually 
matters. “The dog bit the man” means something different than “the man bit the dog.” Because 
the Transformer doesn’t really have a notion of order, we have to add information to give the 
model a hint about the order of tokens in the input sequence: a positional encoding.

In practice, the way this is done in the original Attention is All You Need paper is with periodic 
functions of various wavelengths. For each position  we compute a series of sine 
and cosine functions to get position vectors . Certain mathematical properties 
of these periodic functions make them useful for allowing the model to attend to relative 
positions. (If you’re interested, you can read a much more detailed explanation here.) These 
vectors are then concatenated or added to the input sequence  Positional 
encoding only happens once, right before the input sequence (i.e. a sequence of word embedding 
vectors) is fed to the model.

An alternative approach is to use a learnable positional embedding, which is also added to the 
word embeddings before they are fed to the model. Since the original Transformer paper, many 
other ways of informing the model of absolute or relative positions of tokens have been 
proposed, but those details are outside the scope of this memo.

Layer Normalization 
Various forms of normalization and standardization are common in machine learning in order to 
improve learning. Historically, inputs to machine learning models would be normalized, 
standardized, or whitened before being fed to the model. A more recent proposal is to explicitly 
include normalization at multiple stages of neural network architectures, rather than simply as a 
data preprocessing step. Because normalization (subtracting a mean, dividing by standard 
deviation) is a mathematical operation like any other, we can compute gradients and back-
propagate through normalization layers. This helps training by reducing internal covariate shift, 
i.e. the shifting distributions of values at each layer as parameters update, which can cause 
problems with gradients and saturating/dying activation functions. Normalization helps networks 
train faster, and even provides some regularization.

(1, 2,…,n)
( , ,…, )p1 p2 pn

(x ,x ,…,x ).1 2 n

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/


Transformers Memo 12

BatchNorm proposes normalizing the same neuron across a batch of inputs. LayerNorm averages 
in the other direction, i.e. across all neurons in a layer for a single training example. This has 
some advantages over BatchNorm: it is agnostic to batch size, and it can be used in recurrent 
architectures. In the Transformer, it is only used to average across the embedding dimension (i.e. 
we normalize each element  in the input sequence  separately). After 
normalization, there is a linear layer (i.e. multiply each neuron by a learned weight W and add a 
bias b). 

More recently, state-of-the-art architectures have omitted the bias b, and some have even argued 
for a lightweight variant of LayerNorm that normalizes without centering (RMSNorm).

Dropout
Dropout is a regularization technique for neural networks that zeroes out neurons with some 
small probability during training. This results in a model that is more robust—it can’t rely too 
heavily on any particular neuron, and it prevents neurons from “co-adapting” and relying too 
heavily on each other. This prevents the model from overfitting, and basically gives rise to a 
neural network that, at test time, is equivalent the average of an “ensemble” of different neural 
networks. Dropout is applied at various points in the Transformer for regularization.

Position-Wise Feed Forward Network
Each Transformer self-attention layer is followed by a “position-wise” feed-forward network, 
which is a fancy way of saying the same small neural network is applied to each sequence 
element . Each layer of the Transformer has its own separate position-wise feed-
forward network, but the same network is shared across sequence elements (i.e. the first word in 
a sentence has the same feed-forward network applied to it as the last word).

s , s ,…, s1 2 n S

s , s ,…, s1 2 n

https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/pdf/1607.06450.pdf
https://arxiv.org/abs/1910.07467
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All Together: The Encoder Block & Transformer Encoder
A Transformer encoder block is just a combination of two sublayers: multi-head self-attention, 
followed by the position-wise feed-forward network. After each sublayer, a residual connection 
is employed, which means that the input of the sublayer is added back to the output. This 
approach (originating from the ResNet paper) helps with the problem of vanishing gradients, and 
allows information to flow more easily between layers, allowing neural networks to get much 
deeper without becoming impossible to train. This is followed by LayerNorm (together, “Add & 
Norm”). Dropout is used before each Add & Norm step.

It has also become common to use dropout within self-attention layers (randomly drop some 
units after the softmax), but this is not mentioned in the original Transformer paper. Newer 
Transformer variants also often use a “pre-norm” (LayerNorm before the sublayer, rather than 
after), which tends to make training a bit less finicky. (Vaswani et al. have to use a whole bag of 
tricks like learning rate warmup to make their model improve stably.)

The Transformer encoder is one half of the Transformer model—the half which maps input 
sequences to an embedding, which can then be used to output a translated sequence by the 
decoder. The encoder comprises the embedding step and positional encoding for the input 

https://arxiv.org/abs/1512.03385
https://arxiv.org/pdf/2002.04745.pdf
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sequence, followed by multiple Transformer encoder blocks (as laid out above). The original 
Transformer paper uses 6 blocks in the encoder.

The Transformer Decoder
N.B.—This section is a bit complicated, and you can skip it and still come away with decent 
knowledge of self-attention, enough to understand how the Transformer is adapted for tabular 
data. However, the decoder is relevant if you want to fully understand how the original 
Transformer is used as a sequence-to-sequence model (i.e. for machine translation), or 
understand autoregressive large language models based on the Transformer decoder, such as 
OpenAI’s GPT-3.

Decoding: Training vs. Inference
Recall that the goal of the Transformer is sequence-to-sequence translation. Once a sequence has 
passed through the Transformer encoder, we have an output that is a representation of the input 
sequence, . That is the encoding of the sequence. To get a legible output 
sequence, we now have to decode this hidden representation.

During inference or deployment, we don’t have a target sentence (we don’t know the answer in 
advance), and generate the output one word at a time. At each decoding step, the decoder 
receives: (1) The encoding of the input sequence, and (2) The output sequence generated so far. 
The decoder outputs a probability distribution over the next word, and we either sample from it, 

Z = (z , z ,…, z )1 2 n
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or greedily choose the next word, and add that to the output sequence so far. At the first step, we 
only pass a [start of sequence] token. This means to generate a sequence of length , we have to 
run the decoder  times!

During training, the main difference is that we already know the target sentence, and we want to 
encourage the model to produce that sentence. We don’t feed the decoder its own output to get 
the next word like during deployment; instead we feed it the right answer so far, and make it 
guess the next word (This is called teacher forcing). Suppose the correct translation is “I love 
you a lot”, and we give the network the correct answer so far, which might be “I love.” The 
network predicts the next word as “myself”, incorrectly. Rather than feeding in “I love myself” 
to get the next word, we just feed in the correct answer, “I love you”. 

Doing this naïvely, training takes as many decoding steps as deployment: we have to run the 
decoder  times to train on a target sentence of length , giving it more of the correct sentence 
with each iteration, and making it predict the next word. Meanwhile, the decoder architecture 
(which, like the encoder, takes a sequence  and maps it to an equal-
length sequence) is producing output that is mostly discarded. What a waste! However, with the 
help of one simple trick (masked self-attention), the architecture of the Transformer allows all of 
these steps to happen in parallel—we can feed the entire target sequence to the decoder during 
training, and use a mask on the attention matrix to stop it from “cheating” and looking ahead. 
This mechanism, masked multi-head self-attention (or causal attention) is explained in the 
following section.

Masked Multi-Head Self-Attention

k

k

Source: Lennart Sverson’s slides on Transformer models.

k k

S = (s , s ,…, s )1 2 k

https://chalmersuniversity.app.box.com/s/c2a64rz0hlp44pdouq9mc24msbz60xf2
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The decoder receives two inputs: (1) the target sequence, and (2) the encoded input sequence 
(output by the encoder). We want the output of the decoder  to 
correspond to a valid set of  next-token predictions for the target sequence 

, so that  and so on. If we just used normal self-attention, the 
decoder could just copy  from the input and correctly output that , and do the same for 
all , instead of learning to predict unseen words.

Masked multi-head self-attention insists that, during the attention computation (which creates a 
new representation for each  based on a weighted average of the whole sequence), only tokens 
before  can contribute information. All tokens after  must not contribute, which means they 
must have attention weight of 0. For instance, in the example below, the output  (which aims 
to predict ) should only depend on , and not on  or .

Once this objective is understood, masked self-attention is easy to implement: attention weights 
are computed as normal, but before the softmax, all attention weights that would let information 
flow from a later token to an earlier token are zeroed out (to be precise, set to ). The result 
looks something like the simple attention matrix below: for a given query, it can only have a non-
zero attention weight for keys that correspond to itself, and earlier tokens. This means that when 
this attention matrix is used to compute a weighted average of values, the representation for a 
given position (e.g. the word “love”) is only an average of the values for earlier tokens (”Hello” 
and “I”), and itself.

Z = (z , z ,…, z )1 2 k

k T =
(t , t ,…, t )1 2 k z =1 t , z =2 2 t3

t2 z =1 t2
zi

ti
ti ti

y3
x4 x1:3 x4 x5

Source: Lennart Sverson’s slides on Transformer models.

−∞

https://chalmersuniversity.app.box.com/s/c2a64rz0hlp44pdouq9mc24msbz60xf2
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After zeroing out the values, the softmax will normalize the weights to ensure they add up to 1 
(which they do not in the illustration above). This masked self-attention is all that is needed to 
allow parallelism during training. During testing/deployment, it also makes sense to use the 
mask, since any sequence elements after the one you are trying to predict haven’t been output 
yet, and are unknown/undefined.

Encoder-Decoder Attention
So far, we’ve only talked about the part of the decoder that processes the target sequence (during 
training), or the generated sequence so far (during deployment). The last obvious piece is that 
the decoder must digest the information about the input sequence from the encoder in order to 
translate it! This is also done using attention—not unlike how it was used in recurrent models by 
Bahdanau et al., where the representation of the input sequence is collapsed into a dynamic 
weighted average of encoder states, based on their relevance to the current decoding step.

This attention block takes in two inputs: (1) the output of the previous decoder layer; and (2) the 
final encoder output. (These sequences may have different lengths—for example, te amo in 
Spanish translates to I love you in English, so the encoder sequence would have length 2, and the 
target sequence would have length 3. However, both encoder and decoder work with sequences 
of tokens that have the same embedding dimension .) The multi-head attention 
computation is much the same, but unlike the self-attention computations outlined above, the 

dmodel

https://arxiv.org/abs/1409.0473
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queries come from the decoder sequence, and the keys and values come from the encoder. For 
each decoder token , we use its queries compute its attention weights relative to 
keys for each encoder token , giving a  attention-weight matrix, which 
captures the relevance of each encoder token to each decoder token.

Using the attention matrix, we compute a weighted average of the encoder state values  
,  for each decoder token, weighted by their relevance to that decoder token. The 

result is a new sequence of length  (matching the dimensions of the decoder), comprised of 
information from the encoder (the decoder state only affects the weights). When this is added 
and normed with the previous decoder state, information flows from the encoding of the input 
sequence into the decoder, with attention paid to the most relevant parts of the input sequence.

t , t ,…, t1 2 m

e , e ,…, e1 2 n m× n

v , v ,…, v1 2 n

m
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We don’t have to worry about masking here, because the decoder is supposed to 
know/understand the entire input sequence—there’s nothing to hide there. And no decoder states 
interact with one another during this attention computation—only with the encoder states.

Putting it All Together: The Decoder Block & Transformer Decoder
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A Transformer decoder block is a combination of three sublayers: masked multi-head self-
attention, encoder-decoder attention, and finally a position-wise feed-forward network (as in the 
encoder). Just like the encoder block, there is a residual connection, LayerNorm, and dropout 
after each sublayer. The decoder is just a stack of  decoder blocks. Each one takes two inputs: 
(1) the encoder output (which is the same for all  decoder blocks), and (2) the output of the 
previous decoder block (or the target sequence for the very first decoder block). Finally, at the 
end, a fully connected (linear) layer is used to project the decoder outputs so that they are the 
size of the vocabulary, and then a softmax is applied to get probabilities of the next token at each 
position.

Using Transformers for Self-Supervised Pretraining
The original Transformer was designed for a specific task (machine translation), and was trained 
on the appropriate data (pairs of sequences from different languages), to learn embeddings and 
weights to optimize performance on that task. However, later research leveraging transformers 
introduced the idea of self-supervised pretraining: learning from a large amount of unlabeled 

Source: Lennart Sverson’s slides on Transformer models.

N

N

https://chalmersuniversity.app.box.com/s/c2a64rz0hlp44pdouq9mc24msbz60xf2
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data on a “pretext” task, and then fine-tuning the model on labeled data for a downstream task 
(such as sentiment classification). 

Transfer learning had been popular in computer vision for years (many tasks were improved by 
transferring a model trained on ImageNet), and was used to a limited extent in natural language 
processing (mostly pretraining word embeddings). ULMFiT (2018) was the first model to 
successfully leverage self-supervised pretraining (with an LSTM model rather than a 
transformer), but it was the incredible results achieved with transformers (beginning with BERT 
and GPT) that made self-supervised pretraining ubiquitous in the language domain.

BERT (2018)
BERT, and later BERT-like architectures, use only the encoder part of the original Transformer 
model. This means there is no masked attention, so every word in the output can be influenced 
by every word in the input—there’s no autoregressive property. BERT is trained on a masked-
language-modeling objective (predicting words that are masked out in the input sentence), and a 
next-sentence-prediction task (predicting if Sentence B followed Sentence A in the original 
document). These are both semi-supervised tasks that can easily be done on a large amount of 
free-text data, without any intensive manual labeling. As a result, BERT can be trained on 
gigabytes of data and learn very informative representations for words and sequences, that can 
then be fine-tuned on downstream tasks. Since BERT is designed to digest a whole sequence 
without masking (i.e. attention can flow in both directions), it is generally used tasks that involve 
understanding the sequence (i.e. classification, summarization) rather than predicting the next 
token (that’s where GPT excels).

GPT (2018)
GPT, and its newer (larger) cousins GPT-2 and GPT-3, use only the decoder part of the 
Transformer (omitting encoder-decoder attention, since there’s no encoder). As a consequence, a 
given word ingested by GPT can only attend to words that came before it. This is important, 
because the pretext task for GPT is next-token prediction (also called causal language modeling). 
The model is fed tons of unlabeled text, and its task is to predict the next unseen token. GPT is 
therefore a great model for generating text in response to some prompt, since all you have to do 
is have it repeatedly predict the next token. Newer versions of GPT have been shown to be 
effective at zero-shot and few-shot NLP tasks, simply by virtue of learning how to predict the 
next token.

https://arxiv.org/pdf/1801.06146.pdf

